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Abstract— Fingerprint recognition systems have advanced significantly in recent years. However, existing biometric systems based on 

fingerprint authentication remain vulnerable to spoofing attacks. Evaluating the effectiveness of fingerprint recognition systems 

requires large-scale datasets, but collecting such data is costly, time-intensive, and restricted by privacy laws. This study introduces a 

deep learning-based approach called the Efficient Voting Method (EVM) for fingerprint recognition and compares its performance with 

three widely used models: Random Forest, Extreme Gradient Boosting (XGBoost), and CatBoost. The proposed method achieves 

superior recognition accuracy while maintaining lower computational complexity compared to existing techniques. Experimental 

evaluations were conducted using the Ada Test and Verification System (ATVSFing), CustomFing and Sokoto Coventry Fingerprint 

(SOCOFing) datasets achieving accuracy rates of 67.25%, 88.79%, and 90.30% respectively. 

 

Index Terms— Fingerprint PAD, Soft Voting, Binary Classification, Biometric Recognition. 

 

I. INTRODUCTION 

Biometric identification is a natural and reliable method 

for verifying an individual’s identity. Traditional 

authentication techniques, such as passwords, PINs, secret 

codes, and passphrases, often prove to be temporary, prone to 

loss, and vulnerable to security threats. These limitations 

hinder accurate identification, necessitating the development 

of biometric systems to enhance security, reliability, and 

efficiency. Biometric identification is categorized into two 

main types: physiological characteristics and behavioural 

traits. Physiological characteristics include fingerprints, 

facial features, palm prints, and iris patterns, while 

behavioural traits encompass voice recognition, keystroke 

dynamics, signature verification, and gait analysis. Among 

these, physiological features are more commonly utilized in 

biometric systems, with fingerprint recognition being one of 

the most widely adopted methods for security applications 

(Agarwal et al., 2020) [1]. Among various biometric 

identifiers such as face, iris, palm print, and ear, automatic 

fingerprint recognition systems (AFRS) remain the extreme 

extensively used, particularly in law enforcement and 

security applications. Due to its uniqueness, ease of use, and 

non-transferability, fingerprint authentication has gained 

widespread adoption in commercial applications (Goyal, 

2017; Gafoor, 2018) [2, 3]. However, the increasing reliance 

on AFRS has led to attempts by criminals to bypass security 

measures by altering or fabricating fingerprints to evade 

detection. 

Biometric systems play a vital role in various domains, 

including law enforcement, forensic investigations, personal 

identification, healthcare, and access control for smartphones 

and tablets, significantly enhancing security and 

convenience. However, the rise of sophisticated attack 

techniques and unpredictable spoofing attempts emphasizes 

the necessity for presentation attack detection (PAD) systems 

that can effectively identify previously unseen threats. 

Fingerprint recognition remains the most widely used 

biometric trait for identity verification across different 

sectors, such as access control for smartphones, banking, 

healthcare, biometric attendance, and visa processing (Jain, 

2016; Sharma, 2019) [4, 5]. Presentation attacks (PAs) pose a 

severe security risk by enabling unauthorized access, 

potentially allowing intruders to exploit biometric systems 

for malicious purposes (Tolosana, 2020) [6]. To mitigate 

these risks, it is essential to develop robust countermeasures 

that can efficiently detect and prevent fingerprint-based 

presentation attacks. 

II. RELATED WORK 

Feng et al. (2010) [7] proposed a technique that separates 

the ridge orientation field into singular and continuous 

orientation components. By examining irregularities in the 

continuous ridge orientation field, these features are utilized 

to train a support vector machine (SVM) classifier to 

distinguish real fingerprints from fake ones. Yoon et al. [8] 

introduced a classification approach that integrates ridge 

orientation with minutiae distribution. Likewise, Tiribuzi et 

al. 2012 [9] designed new features, such as minutiae density 

maps and ridge orientation entropy, to improve fingerprint 

classification. However, double-identity fingerprints do not 

exhibit disruptions in ridge orientation fields or extra 

minutiae, as their alignment and weighted combination 

process prevents such inconsistencies. Consequently, 

existing fingerprint alteration detection methods (Askarin, 

2018) [10] struggle to identify this form of attack. In recent 

years, deep learning has become increasingly prominent in 

biometrics research due to its capability to capture complex 

data patterns and model intricate nonlinear relationships. 

Significant progress in fingerprint authentication has been 
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achieved through convolutional neural networks (CNNs), 

which are used for feature extraction, fingerprint matching, 

liveness detection, spoof detection, and handling low-quality 

fingerprints (Tertychnyi et al. [11]). Jiang et al. [12] 

introduced a patch-based CNN approach to extract minutiae 

features, utilizing two CNNs—one to determine whether a 

region contains a minutia and another to precisely locate it. 

Similarly, Jang et al. [13] proposed a deep CNN model based 

on VGG for fingerprint pore extraction, demonstrating 

improved performance compared to traditional feature-based 

techniques.  

Moreover, Nogueira et al. [14] developed a CNN-based 

model for fingerprint liveness detection. Liveness Detection 

(LivDet) is an international competition series designed to 

evaluate and benchmark Presentation Attack Detection 

(PAD) technologies. The LivDet-2023 Noncontact 

Fingerprint competition [15] marks the first edition dedicated 

to noncontact fingerprint PAD, assessing algorithms and 

systems within this domain. This competition serves as a 

critical benchmark by providing: (a) an independent 

evaluation of the latest advancements in noncontact 

fingerprint PAD for both algorithms and systems, (b) a 

standardized evaluation framework featuring diverse 

Presentation Attack Instruments (PAIs) and live finger 

photos for biometric research, and (c) a comparative analysis 

of cutting-edge algorithms from academia and industry, 

tested on both older and newer Android smartphones 

(Purnapatra et al., 2023) [16]. The authors utilized 

Syn-CoLFinGer, a synthetic fingerprint generation technique 

developed by Priesnitz et al. (2022) [17], which simulates and 

creates finger photos based on contact-based fingerprint 

impressions. However, these artificial live patterns can be 

visually illustrious from real fingertips with relative ease. In 

2023, Purnapatra et al. [16] introduced a PAD dataset that 

adhered to standard Presentation Attack Instrument (PAI) 

creation protocols. This dataset featured three difficulty 

levels, incorporating various materials and PAI textures 

designed to replicate real skin tones. Despite the progress, 

there remained a need for standardized model comparisons 

and evaluation benchmarks across academia and industry to 

enhance performance. The LivDet-2023 Noncontact 

Fingerprint Algorithm and System competition was the first 

LivDet event dedicated to noncontact fingerprint-based PAD. 

It was co-organized by Clarkson University (USA) and the 

University at Buffalo (USA). Previously, the LivDet series 

had hosted multiple liveness detection competitions covering 

fingerprint, face, and iris recognition. Additional details on 

past competitions can be found in the LivDet Team records. 

The primary aim of LivDet-2023 was to assess the 

effectiveness of cutting-edge noncontact fingerprint PAD 

algorithms and systems in detecting both traditional and 

novel PAIs. The competition was divided into two categories: 

Algorithms and Systems. Participants had the opportunity to 

compete in one or both categories, and institutions from both 

academia and industry were encouraged to take part. Unlike 

the Algorithm competition, where participants were provided 

with training data to ensure standardized evaluation, the 

System competition did not offer an official training dataset. 

Competitors in the System category were allowed to use 

proprietary or publicly available datasets for training their 

models. The Algorithm competition focused on 

single-fingertip-based models and included six different PAI 

types: printed finger photos on glossy paper, ecoflex, 

playdoh, wood glue, latex, and high-quality synthetically 

generated fingertip images.  

Tanuj et al. (2024) [18] introduced a contactless fingerprint 

recognition system incorporating spoof images fabricated 

using various materials. Taneja et al. (2016) [19] assessed the 

effectiveness of different texture signifiers, including Local 

Binary Patterns (LBP), Locally Uniform Comparison Image 

Descriptor (LUCID), and Dense Scale-Invariant Feature 

Transform (DSIFT), in combination with Support Vector 

Machine (SVM) for non-contact fingerprint Presentation 

Attack Detection (PAD). They developed a spoof fingerprint 

database using six photo attack techniques and two print 

attack methods. Their findings revealed that LBP-based 

features performed the best, achieving an Equal Error Rate 

(EER) of 3.7%. Zhang et al. (2016) [20] proposed a 2D fake 

fingerprint detection method tailored for smartphones. This 

approach integrated Convolutional Neural Networks (CNNs) 

with two local descriptors, LBP and Local Phase 

Quantization (LPQ). To evaluate their algorithm, they 

created a dataset of 2D printed fingerprints captured using a 

capacitive fingerprint scanner. Wasnik et al. (2018) [21] 

introduced a smartphone-based PAD technique that utilized 

the convolution of second-order Gaussian derivatives at 

multiple scales. Their experiments were conducted on a 

self-compiled database containing different Presentation 

Attack Instruments (PAIs), including display, print-photo, 

and replay attacks. Marasco et al. (2021) [22] compared 

various CNN models using the IIITD Smartphone 

Finger-Photo database, which includes spoofed data from 

printouts and display-based attacks. Their findings suggested 

that the PAD system based on AlexNet exhibited greater 

robustness against different spoofing techniques.           

III. DATASET 

The research on fingerprint spoofing detection utilizes 

three datasets: ATVSFing, CustomFing, and SOCOFing. 

These datasets contain fingerprint images labeled as either 

live or fake, aiding in the development and evaluation of 

detection algorithms. ATVSFing, the Ada Test and 

Verification System, is a well-established benchmark for 

assessing the robustness of fingerprint recognition systems 

against presentation attacks. It includes a diverse collection 

of counterfeit fingerprint images created using various 

materials and techniques.  The CustomFing, is a balanced 

collection containing 3,000 real and 3,000 fake fingerprint 

images. With an equal number of samples in both categories. 
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Each image is clearly labeled as either "live" or "fake," 

making it suitable for supervised learning and classification 

tasks. The SOCOFing dataset offers additional metadata, 

including gender, hand orientation, and finger identification, 

with all subjects being 18 years or older. Like ATVSFing, it 

includes various spoofed fingerprint images produced using 

different materials and techniques.           

 
(a) Fake 

 
(b) Live 

Fig. 1. Sample Fingerprints of ATVSFing Dataset1 

 
(a) Fake 

 
(b) Live 

Fig. 2. Sample Fingerprints of Custom Dataset2 

 
(a) Fake 

 
(b) Live 

Fig. 3. Sample Fingerprints of SOCOFing Dataset3 

IV. PROPOSED METHOD 

The soft voting ensemble classifier integrates predictions 

from Random Forest, XGBoost, and CatBoost models. Each 

classifier is trained separately, and their predictions are 

averaged to enhance overall accuracy. The performance is 

assessed using multiple evaluation metrics, including 

accuracy, ROC curves, and precision-recall curves, with 

results visualized for better analysis. By combining the 

strengths of these individual models, the ensemble approach 

aims to improve predictive performance. This method 

effectively utilizes Random Forest, XGBoost, and CatBoost 

classifiers to enhance classification accuracy. The working of 

the soft voting ensemble model is given below: 

1. Model Training: Each model is trained independently 

on the same training dataset train train(x , y )
. 

Random Forest Classifier: RF model

train trainTrain(RandomForestClassifier,x , y )
 

XGBoost Classifier: XGB model

train trainTrain(XGBClassifier,x , y )
 

                  CatBoost Classifier: CatBoost mode

train trainTrain(CatBoostClassifier,x , y ,params)
 

 
Fig. 4. Flowchart of the proposed model 

2. Prediction Generation: Each model generates 

predictions for the testing dataset Xtest. Random Forest:  

ŷ
RF = RF_model.predict(Xtest) 

XGBoost: 
ŷ

XGB = XGB_model.predict(Xtest) 

CatBoost:  
ŷ

CatBoost = CatBoost_model.predict(Xtest) 

3. Soft Voting Ensemble: Soft voting involves averaging 

the predictions from each classifier. For each 

sample i in the testing dataset, the ensemble 

prediction iŷ
 is determined by: 

i RF,i XGB,i CatBoost,i

1
ˆ ˆ ˆ ˆy (y y y )

3
= + +

                         (1) 
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where 

iŷ
= final predicted probability for sample i 

ŷRF = the probability predicted by the 

Random Forest classifier 

ŷXGB = the probability predicted by the 

XGBoost classifier 

ŷCatBoost = the probability predicted by the 

CatBoost classifier 

A threshold (usually 0.5) is used to convert the averaged 

prediction into a binary class label. If the   average is greater 

than or equal to 0.5, the sample is classified as 1, otherwise as 

0 as given below:                   

iŷ
= {

1  𝑖𝑓
RF,i XGB,i CatBoost,i

1
ˆ ˆ ˆ(y y y ) 0.5

3
+ + 

 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (2) 

V. RESULT ANALYSIS 

The performance of the model is assessed using evaluation 

metrics such as APCER, BPCER, F1-score, precision, and 

recall. Tables 1, 2, and 3 provide a comparative analysis 

between the proposed method and recent algorithms. 

Table I: Performance of models on ATVSFing Dataset1 

Model/Parameters F1-Score Precision Recall BPCER APCER Accuracy 

Random Forest 0.70245 0.63636 0.78385 0.44792 0.21615 0.66797 

XGBOOST 0.71245 0.62366 0.83073 0.50130 0.16927 0.66471 

 CATBOOST 0.70673 0.61710 0.82682 0.51302 0.17318 0.65690 

HVMethod 0.71274 0.63479 0.81250 0.46745 0.18750 0.67253 

Table 2: Performance of models on CustomFing Dataset2 

Model/Parameters F1-Score Precision Recall BPCER APCER Accuracy 

Random Forest 0.86347 0.90103 0.82891 0.08523 0.17109 0.87326 

XGBOOST 0.87447 0.88500 0.86419 0.10511 0.13581 0.88004 

CATBOOST 0.60317 0.68032 0.54173 0.23828 0.45827 0.65536 

HVMethod 0.87513 0.94860 0.81222 0.04119 0.18778 0.88793 

Table 3: Performance of models on SOCOFing Dataset3 

Model/Parameters F1-Score Precision Recall BPCER APCER Accuracy 

Random Forest 0.82303 1.00000 0.69928 0.00000 0.30072 0.84964 

XGBOOST 0.89279 0.99888 0.80707 0.00091 0.19293 0.88225 

CATBOOST 0.77260 0.77901 0.76630 0.21739 0.23370 0.77446 

HVMethod 0.86653 1.00000 0.76449 0.00000 0.23551 0.90308 

 

 
Fig. 5. Performance of the Models on ATVSFing Dataset1 

 
Fig. 6. ROC Curve for ATVSFing Dataset1  
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Fig. 7. Precision-Recall Curve for ATVSFing Dataset1 

 
Fig. 8. Performance of the Models on CustomFing Dataset2 

 
Fig. 9. ROC Curve for CustomFing Dataset2 

 
Fig. 10. Precision-Recall Curve for CustomFing Dataset2 

 

Fig. 11. Performance of the Models on SOCOFing Dataset3 

 
Fig. 12. ROC Curve for SOCOFing Dataset3 

 
Fig. 13. Precision-Recall Curve for SOCOFing Dataset3 

For the SOCOFing fingerprint dataset3, our method 

achieved the highest performance with an accuracy of 

90.30%. On the dataset2, our method demonstrated strong 

consistency, attaining an accuracy of 88.79%. Additionally, 

the method yielded an impressive accuracy of 67.25% on the 

dataset3. These results highlight the robustness and 

effectiveness of the proposed approach across various 

datasets in fig. 14. 
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Fig. 14. Performance Comparison of Models with the 

datasets 

VI. CONCLUSION 

Our proposed Efficient Voting Method (EVM) 

demonstrated outstanding performance, achieving accuracy 

rates of 67.25 % on the ATVSFing dataset1, 88.79% on the 

CustomFing dataset2, and 90.30% on the SOCOFing 

dataset3. These results underscore the method’s effectiveness 

in handling diverse datasets and its potential for real-world 

applications requiring precise classification. The findings 

confirm that our method is robust and reliable for 

classification tasks, making it a valuable tool for applications 

that demand high accuracy. Future research could explore the 

integration of other biometric modalities, such as iris and 

facial recognition, to enhance anti-spoofing capabilities 

further. 
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